
Streams and File I/O

Fundamentals of Computer Science

Outline

 Overview of Streams and File I/O

 Buffering

 Text File I/O

 Binary File I/O

Streams

 Stream: an object that either delivers data to its destination (screen,
file, etc.) or that takes data from a source (keyboard, file, etc.)

 it acts as a buffer between the data source and destination

 A stream connects a program to an I/O object

 Input stream: a stream that provides input to a program

 System.in is an input stream

 Output stream: a stream that accepts output from a program

 System.out is an output stream

Buffering

 Not buffered: each byte is read/written from/to disk as soon as possible

 “little” delay for each byte

 A disk operation per byte - higher overhead

 Buffered: reading/writing in “chunks”

 Some delay for some bytes

 Assume 16-byte buffers

 Reading: access the first 4 bytes, need to wait for all 16 bytes are
read from disk to memory

 Writing: save the first 4 bytes, need to wait for all 16 bytes before
writing from memory to disk

 One disk operation per buffer of bytes---lower overhead

Binary Versus Text Files

 All data and programs are ultimately just zeros and ones
 each digit can have one of two values, hence binary
 bit is one binary digit
 byte is a group of eight bits

 Text files: the bits represent printable characters
 one byte per character for ASCII, the most common

code
 for example, Java source files are text files
 so is any file created with a "text editor"

 Binary files: the bits represent other types of encoded
information, such as executable instructions or numeric
data
 these files are easily read by the computer but not

humans
 they are not "printable" files

 actually, you can print them, but they will be
unintelligible

 "printable" means "easily readable by humans when
printed"

Java: Text Versus Binary Files

 Text files are more readable by humans

 Binary files are more efficient

 computers read and write binary files more easily than text

 Java binary files are portable

 they can be used by Java on different machines

 reading and writing binary files is normally done by a program

 text files are used only to communicate with humans

Java Text Files

• Source files

• Occasionally input files

• Occasionally output files

Java Binary Files

• Executable files (created by

compiling source files)

• Usually input files

• Usually output files

Text Files vs. Binary Files

 Number: 127 (decimal)

 Text file

 Three bytes: “1”, “2”, “7”

 ASCII (decimal): 49, 50, 55

 ASCII (octal): 61, 62, 67

 ASCII (binary): 00110001, 00110010, 00110111

 Binary file:

 One byte (byte): 01111111

 Two bytes (short): 00000000 01111111

 Four bytes (int): 00000000 00000000 00000000 01111111

Text File I/O

 Important classes for text file output (to the file)

 PrintWriter

 FileOutputStream [or FileWriter]

 Important classes for text file input (from the file):

 BufferedReader

 FileReader

 FileOutputStream and FileReader take file names as

arguments.

 PrintWriter and BufferedReader provide useful methods for

easier writing and reading.

 Usually need a combination of two classes

 To use these classes your program needs a line like the following:

import java.io.*;

Text File Output

 To open a text file for output: connect a text file to a stream for
writing

PrintWriter outputStream =

new PrintWriter(new FileOutputStream("out.txt"));

 Similar to the long way:

FileOutputStream s = new FileOutputStream("out.txt");

PrintWriter outputStream = new PrintWriter(s);

 Goal: create a PrintWriter object

 which uses FileOutputStream to open a text file

 FileOutputStream “connects” PrintWriter to a text file.

Output File Streams

PrintWriter FileOutputStream

Disk Memory

smileyOutStream smiley.txt

PrintWriter smileyOutStream = new PrintWriter(new FileOutputStream(“smiley.txt”));

Methods for PrintWriter

 Similar to methods for System.out

 println

outputStream.println(count + " " + line);

 print

 format

 flush: write buffered output to disk

 close: close the PrintWriter stream (and file)

Text File Output Demo

public static void main(String[] args)
{
 PrintWriter outputStream = null;
 try
 {
 outputStream =
 new PrintWriter(new FileOutputStream("out.txt"));
 }
 catch(FileNotFoundException e)
 {
 System.out.println("Error opening the file out.txt. “
 + e.getMessage());
 System.exit(0);
 }

System.out.println("Enter three lines of text:");

String line = null;

int count;

 for (count = 1; count <= 3; count++)

 {

 line = keyboard.nextLine();

 outputStream.println(count + " " + line);

 }

 outputStream.close();

 System.out.println("... written to out.txt.");

}

Gotcha: Overwriting a File

Opening an output file creates an
empty file
 creates a new file if it does not already exist

 opening an output file that already exists eliminates the
old file and creates a new, empty one

data in the original file is lost

 can also append to a file (next slide)

Appending to a Text File

 To add/append to a file instead of replacing it, use a different
constructor for FileOutputStream:

outputStream =

 new PrintWriter(new FileOutputStream("out.txt", true));

 Second parameter: append to the end of the file if it exists?

 Sample code for letting user tell whether to replace or append:

System.out.println("A for append or N for new file:");

char ans = keyboard.next().charAt(0);

boolean append = (ans == 'A' || ans == 'a');

outputStream = new PrintWriter(

 new FileOutputStream("out.txt", append));

true if user

enters 'A'

Closing a File

 An output file should be closed when you are done
writing to it (and an input file should be closed when
you are done reading from it).

 Use the close method of the class PrintWriter
(BufferedReader also has a close method).

 For example, to close the file opened in the previous
example:

outputStream.close();

 If a program ends normally it will close any files that
are open.

Basic Binary File I/O

 Important classes for binary file output (to the file)

 ObjectOutputStream

 FileOutputStream

 Important classes for binary file input (from the file):

 ObjectInputStream

 FileInputStream

 Note that FileOutputStream and FileInputStream are used

only for their constructors, which can take file names as arguments.

 ObjectOutputStream and ObjectInputStream cannot take

file names as arguments for their constructors.

 To use these classes your program needs a line like the following:

import java.io.*;

Java File I/O: Stream Classes

 ObjectInputStream and ObjectOutputStream:

 have methods to either read or write data one byte at a time

 automatically convert numbers and characters into binary

 binary-encoded numeric files (files with numbers) are not
readable by a text editor, but store data more efficiently

 Remember:

 input means data into a program, not the file

 similarly, output means data out of a program, not the file

Using ObjectOutputStream
to Output Data to Files:

 The output files are binary and can store any of the primitive
data types (int, char, double, etc.) and the String type

 You can store reference types – we’ll talk about that later in the semester

 The files created can be read by other Java programs but are not
printable

 The Java I/O library must be imported by including the line:
import java.io.*;

 it contains ObjectOutputStream and other useful class

definitions

 An IOException might be thrown

Example: Opening an Output File

To open a file named numbers.dat:

ObjectOutputStream outputStream =

 new ObjectOutputStream(

 new FileOutputStream("numbers.dat"));

 The constructor for ObjectOutputStream requires a
FileOutputStream argument

 The constructor for FileOutputStream requires a String argument

 the String argument is the output file name

 The following two statements are equivalent to the single statement
above:

 FileOutputStream middleman =
new FileOutputStream("numbers.dat");

ObjectOutputStream outputStream =

new ObjectOutputSteam(middleman);

Some ObjectOutputStream Methods

 You can write data to an output file after it is connected to a stream
class

 Use methods defined in ObjectOutputStream

 writeInt(int n)

 writeDouble(double x)

 writeBoolean(boolean b)

 etc.

 Note that each write method throws IOException

 eventually we will have to write a catch block for it

 Also note that each write method includes the modifier final

 final methods cannot be redefined in derived classes

Closing a File

 An Output file should be closed when you are done
writing to it

 Use the close method of the class
ObjectOutputStream

 For example, to close the file opened in the previous
example:

outputStream.close();

 If a program ends normally it will close any files that

are open

Writing a Character to a File:
an Unexpected Little Complexity

 The method writeChar has an annoying property:

 it takes an int, not a char, argument

 But it is easy to fix:

 just cast the character to an int

 For example, to write the character 'A' to the file opened
previously:

outputStream.writeChar((int) 'A');

 Or, just use the automatic conversion from char to int

Writing Strings to a File:
Another Little Unexpected Complexity

 Use the writeUTF method to output a value of type String

 there is no writeString method

 UTF stands for Unicode Text Format

 a special version of Unicode

 Unicode: a text (printable) code that uses 2 bytes per character

 designed to accommodate languages with a different alphabet or no
alphabet (such as Chinese and Japanese)

 ASCII: also a text (printable) code, but it uses just 1 byte per character

 the most common code for English and languages with a similar
alphabet

 UTF is a modification of Unicode that uses just one byte for ASCII
characters

 allows other languages without sacrificing efficiency for ASCII files

Using ObjectInputStream

to Read Data from Files:

 Input files are binary and contain any of the primitive data types (int,
char, double, etc.) and the String type

 The files can be read by Java programs but are not printable

 The Java I/O library must be imported including the line:
import java.io.*;

 it contains ObjectInputStream and other useful class definitions

 An IOException might be thrown

Opening a New Input File

 Similar to opening an output file, but replace "output" with "input"

 The file name is given as a String

 file name rules are determined by your operating system

 Opening a file takes two steps

1. Creating a FileInputStream object associated with the file name
String

2. Connecting the FileInputStream to an ObjectInputStream
object

 This can be done in one line of code

Example: Opening an Input File

To open a file named numbers.dat:

ObjectInputStream inStream =

new ObjectInputStream (new

FileInputStream("numbers.dat"));

 The constructor for ObjectInputStream requires a
FileInputStream argument

 The constructor for FileInputStream requires a String argument

 the String argument is the input file name

 The following two statements are equivalent to the statement at the top
of this slide:

 FileInputStream middleman =
new FileInputStream("numbers.dat");

ObjectInputStream inputStream =

new ObjectInputStream (middleman);

Some ObjectInputStream Methods

 For every output file method there is a corresponding input file
method

 You can read data from an input file after it is connected to a stream
class
 Use methods defined in ObjectInputStream

 readInt()

 readDouble()

 readBoolean()

 etc.

 Note that each write method throws IOException

 Also note that each write method includes the modifier final

Input File Exceptions

 A FileNotFoundException is thrown if the file is not

found when an attempt is made to open a file

 Each read method throws IOException

 we still have to write a catch block for it

 If a read goes beyond the end of the file an EOFException

is thrown

Avoiding Common ObjectInputStream File

Errors

There is no error message (or exception)

if you read the wrong data type!

 Input files can contain a mix of data types

 it is up to the programmer to know their order and use
the correct read method

 ObjectInputStream works with binary, not text files

 As with an output file, close the input file when you are
done with it

Common Methods
to Test for the End of an Input File

 A common programming situation is to read data from an
input file but not know how much data the file contains

 In these situations you need to check for the end of the file

 There are three common ways to test for the end of a file:

1. Put a sentinel value at the end of the file and test for it.

2. Throw and catch an end-of-file exception.

3. Test for a special character that signals the end of the file
(text files often have such a character).

The EOFException Class

 Many (but not all) methods that read from a file throw an end-of-file
exception (EOFException) when they try to read beyond the file

 all the ObjectInputStream methods do throw it

 The end-of-file exception can be used in an "infinite"
(while(true)) loop that reads and processes data from the file

 the loop terminates when an EOFException is thrown

 The program is written to continue normally after the
EOFException has been caught

Using
EOFException

 try

 {

 ObjectInputStream inputStream =

 new ObjectInputStream(new FileInputStream("numbers.dat"));

 int n;

 System.out.println("Reading ALL the integers");

 System.out.println("in the file numbers.dat.");

 try

 {

 while (true)

 {

 n = inputStream.readInt();

 System.out.println(n);

 }

 }

 catch(EOFException e)

 {

 System.out.println("End of reading from file.");

 }

 inputStream.close();

 }

 catch(FileNotFoundException e)

 {

 System.out.println("Cannot find file numbers.dat.");

 }

 catch(IOException e)

 {

 System.out.println("Problem with input from file numbers.dat.");

 }

32

main method from

EOFExceptionDemo

Intentional "infinite" loop to

process data from input file

Note order of catch blocks:

the most specific is first

and the most general last

Loop exits when end-of-

file exception is thrown

Processing continues
after EOFException:

the input file is closed

Summary

 Overview of Streams and File I/O

 Buffering

 Text-File I/O

 Basic Binary-File I/O

